Earth Temperature

Why Temperatures vary at Sea Level?

The Earth has an axial tilt of about 23.44° (23° 26’). The axis is tilted in the same directionFigure 10- Axial tilt of the Earth throughout the solar year. However, as it orbits around the Sun,  the Earth’s hemisphere that is tilted away from the Sun will gradually become tilted towards the Sun while moving on a near circular orbit, and vice versa for the other hemisphere. This effect is the main cause of the four seasons. The hemisphere that is tilted towards the Sun experiences more hours of sunlight each day. The Tropic of Capricorn, or southern tropic, is one of the five major belts or circles of latitude. It marks a region of homogenous temperature on the map of the Earth. It lies 23° 26′ south of the Equator, and marks the most southerly latitude at which the Sun appears directly perpendicular on December 21 in an event that is called the Winter Solstice. Due to Earth slight wobbling around its axis, much like a top toy, the Winter Solstice is very slowly moving away from December 21. Equally, in the northern hemisphere, equivalent of the Tropic of Capricorn, there is the Tropic of Cancer at which the Sun appears directly perpendicular on June 21 in an event that is called Summer Solstice. The region north of the Tropic of Capricorn and south of the Tropic of Cancer is known as the Tropics. Therefore, it is the case that the Sun perpendicular appearance on the surface of the planet is confined and is in constant forward and backward movement between the two tropics. Some believe that the Equator experiences the highest temperature since it is thought to be closer to the Sun than any other region of our planet. We should consider that the Earth axial tilt does not make the Equator any closer to the Sun than the southern Middle Latitude Belt during a Winter Solstice for example. The closest to the Sun, in such an illustration, would in fact be the region tangent of the orbit plateau of the solar system i.e. on the Tropic of Capricorn. Some question what makes the Equator to become the hottest place on Earth when measured at sea level? Some attribute the angle of projection between the solar rays and the surface of the Earth to influence the temperature variation.

The angle of projection starts from 90° at the region tangent to the orbit plateau of the solar system and grows smaller until it reaches 0° at the region perpendicular to the orbit plateau of the solar system.  This does not explain why the surface region that is located at 90° (degree) with respect to the solar energy, i.e. at the Tropic of Capricorn during a Winter Solstice, has less temperature than at the Equator, where the temperature is currently highest while the angle of projection is less than 90°!  Lying between the two tropics, and if the angle of projection and/ or proximity to the solar energy are the drivers of high temperature, the Equator could only have the chance, once every six months, to get situated at a right angle, closest to the Sun. This should not make of it the hottest place on Earth all year round; but it is!  As shown in the figure above, on a Winter Solstice day, when region y (Equator) is at the same distance and angle of projection from the Sun as region x (southern Middle Latitude Belt); why then, do they have a difference in temperature? And what does make region y (Equator) the hottest place on Earth all year round; while the nearest region to the Sun, region z (Tropic of Capricorn), experiences a lower temperature?  You may eventually ask, what makes temperature difference across the surface of the Earth altogether, when measured at sea level?

Where is the Heat that reaches Earth’s Surface coming from?

Radiant energy is defined as the feeble energy carried along and within Sun emitted photons passing through to Earth’s surface. Scientists claim that the Radiant energy is the major source of heat reaching Earth’s surface. What if there is a more primary and stronger source of thermal radiation that is much closer to the surface of the Earth than the Sun? We know that the Sun is situated 150 million km (93 million miles) away from Earth and that it has a surface temperature of 6,000° Kelvin. We also know that the Thermosphere layer is situated at 100-800 km (62-500 miles) above the surface of the Earth, and that it carries a temperature ranging from 500° Celsius to 2,000° Celsius. Could the thermal radiation arriving to the surface of Earth from the Thermosphere layer be much larger than that arriving from the Sun? Only a fraction of the total power emitted by the sun falls on an object in space, the Earth, which stands at a distance from the sun. The solar irradiance in Watt/m2 is the power density incident on Earth due to radiation from the sun. At the sun’s surface, the power density is that of a blackbody; a body that emits radiation energy uniformly in all directions per unit area normal to direction of emission, at about 6,0000 Kelvin. The total power from the sun is this value multiplied by the sun’s surface area. However, at some distance from the sun, the total power from the sun is spread out over a much larger surface area and therefore the solar irradiance on an object in space decreases as the object moves further away from the sun. For instance the total power from the Sun reaching Mars at 227 million km distance is much less than that reaching the Earth at only 150 million km far from the Sun (Earth Orbit Radius= D).

Figure 63- Radiation Intensity fromm the Sun

The solar irradiance on Earth at 150 million km D from the Sun is found by dividing the total power emitted from the sun by the surface area over which the sunlight falls. The total solar radiation emitted by the Sun is given by σT4, as defined by the Boltzmann’s blackbody equation multiplied by the surface area of the Sun (4πR2Sun) where RSun is the radius of the Sun. The surface area over which the power from the Sun falls will be 4πD2. Where D is the distance of the object from the Sun. Therefore, the solar radiation intensity, HE-T in (Watt/m2), incident on the Earth looks as follows;

Figure 64- Radiation Intensity Reaching Earth from the Sun


  • HE-S is the radiation intensity (in W/m2) at the Earth’s Troposphere due to radiation received from the Sun.
  • HSun is the radiation density at the Sun’s surface (in W/m2) as determined by Stefan-Boltzmann’s blackbody equation E= σT4 ; where σ = 5.67 x 10-8 W/mx K4
  • T is the temperature of the surface of the Sun at 6,0000 Kelvin
  • RSun is the radius of the Sun in meters as shown in the formula above; and
  • D is the distance from the Sun to the Earth’s surface in meters as shown in the formula above.

It is therefore found that the radiation intensity reaching the Earth from the Sun is 1,366 Watt/m2.

Figure 88- Intersection

It is measured that the Thermosphere temperature varies between 5000 to 2,0000 Celsius depending on the Sun’s activity and the strength of the magnetic field force; where it is strongest, at the magnetic poles, the Temperature is 5000 Celsius, and where it is weakest at the mid region between the magnetic Poles (i.e. the magnetic equator) it reaches 2,0000 Celsius. Following a similar model to that of the Sun/ Earth radiation as explained above, let us build a model Thermosphere/ Earth radiation, the thermal radiation or heat exchanged at the surface of the Earth from the Thermosphere would be;

Figure 65- Radiation Intensity Reaching Earth from the Thermospherewhere;

  • HE-T is the radiation intensity (in W/m2) at the Earth’s Troposphere due to radiation received from the Thermosphere.
  • T is the temperature of the mid distance between the two magnetic poles at the Thermosphere layer and is taken at an average of 1,8000 Kelvin.
  • S heat ellipsoid in thermosphere is the highest thermal radiation region of the Thermosphere and is modeled as an ellipsoid of radii equal to the weakest magnetic contour at 24 mTesla (550 km, 600 km) and height of 10 km (where most of the Sun’s charged protons get trapped), and is calculated as follows, S = 4 π [(ap bp + ap cp + bp cp)/3] 1/p ; where p=1.6075 and a= 550 km, b= 600 km, and c= 10 km.
  • S heat ellipsoid reaching Earth surface is the reach of the highest thermal radiation area of the Thermosphere to the surface of the Earth that is modeled as an ellipsoid of radii of 9,000 km (i.e. 1/4 Earth circumference) and height of 360 km from Earth’s surface, and is calculated as per above surface formula S, where p=1.6075 and a= 9,000 km, b= 9,000 km, and c= 360 km.
  • The selection of the highest thermal radiation as an ellipsoid within the Thermosphere layer is driven by the shape of the temperature map measured for the Thermosphere layer at

Figure 62- Thermosphere Thermal Structure

It is therefore found that the radiation intensity that reaches the Earth from the Thermosphere is 2,412 Watt/m2.

Why is the Thermosphere that hot?

Figure 61- Protons TrappedAs the Sun is ejecting mass-energy of heavy particles such as electrons and protons, the magnetic field at the Thermosphere layer shields such energetic bodies. The trapped, full of kinetic energy, protons, have no place to go but to spiral along the magnetic field lines while they are travelling between the two magnetic poles.  As protons encounter regions of stronger magnetic field where field lines, they converge. Their spiral-radius is shortened and their speed is slowed down. The protons could reverse paths at the magnetic poles.Figure 12- Radiant Energy from ThermosphereThis could cause the protons to bounce back and forth between the two magnetic poles. It also keeps the thermal radiation, coming from the Thermosphere, to gradually decay above the sky of a specific region of Earth’s surface for the rest of the day even after sunset. As protons spiral around the magnetic field force lines, they reach the maximum spiral-radius and speed at mid region between the two magnetic poles where the magnetic field intensity is lowest. The protons reach the minimum spiral-radius and speed at each of the magnetic poles, where the magnetic field intensity is highest. Collisions between such spiralling protons with one another at various speeds produce thermal energy and temperatures that are proportionate to the protons speed and radius of its spiral motion. Temperature is found to reach 500° Celsius above the magnetic poles and to gradually escalate to reach 2,000° Celsius above the magnetic equator. This makes the region of magnetic equator to always maintain the highest temperature on the surface of the planet and for the regions of the magnetic poles to maintain the lowest temperature. The trapped, oscillating Sun’s protons between the two magnetic poles, day and night, keeps the Thermosphere thermal radiation uninterrupted, though decaying over nights. Such a phenomenon keeps the Earth surface safe from sharp drop in temperature at nights. If it had not magnetic field to trap the protons, the Earth’s surface would have been bombarded during the day with continuous flow protons and the day temperature would have not been different from the moon which has no magnetic field and a day temperature of 123o Celsius. Equally at nights, if Earth had no magnetic field to trap the protons and keep them travelling between its two magnetic poles, colliding with one another and generating thermal radiation to keep a warm surface, the Earth temperature at nights would have not been different from the moon at nights where the temperature reaches -233o Celsius.

The collapse of Earth’s magnetic field in the western and southern hemispheres leads to an increase in the Protons speed and spiral-radius motion around the magnetic force lines. More chances are created for the Protons to collide with one another at a higher speed. The impact of stronger collisions results in higher thermal energy reaching Earth’s surface; Global Warming is thus observed. It is imminent, therefore, that a change in the temperature pattern and precipitation map of the planet will follow any change or repositioning of the magnetic poles and the associated magnetic field intensity; causing Climate Ex-change; as some countries experience warmer than before temperatures and others experience cooler than before temperatures as in the case of North America and Siberia respectively in the past couple of winters. The combined effect of the weakening and the tilting of Earth’s magnetic field lowers its intensity above the North Pole ice cap. The lower the intensity and number of the magnetic field force lines, the longer spiral-radius motion and the faster speed will protons pick up. A higher thermal energy is generated upon such protons’ collision one another in the Thermosphere layer. A similar model could be applied onto planet Mars, where at the same time the ice cap is melting on Earth, the ice cap is melting on Mars.

The Difference between Global Warming and Climate Exchange

Global Warming

Climate Exchange

The magnetic field has weakened in the western hemisphere on average by 10% between the years 1850 and 2000. Additional collapse of 5% is added in the last decade. The weaker the field, the longer spiral-path around the magnetic field force lines, will the protons oscillate between the two magnetic poles. The longer protons travel, the more probability to collide with one another in the Thermosphere layer. The Thermosphere layer’s temperature will rise above the minimum/ maximum marks of +500/ +2,000 degrees Celsius. A higher thermal energy will reach the surface of the Earth, causing overall increase in average temperature. The magnetic pole is moving away from Canada towards Siberia at a much higher rate than last century. The whole magnetic field tilts accordingly and brings  the Thermosphere temperature map to tilt along. This results in shifting of the Temperature Belts on the surface of the Earth, causing Climate Exchange where regions will experience change of Temperature according to the Thermosphere temperature map.

Given the manuscripts, which come from ancient texts that describe a bitter cold wave that occurred between the years 900 AD and 950 AD, in Arabia, we find an obvious climate zone similarity between current date Europe and ancient date Arabia in the years between 900 AD and 950 AD as we centre the Temperature Belts around the location of the magnetic pole. This suggests an obvious indication that Temperature Belts follow the Thermosphere temperature which follows the intensity as well as the locations of the two magnetic poles and proves that Global Warming and Climate Change are not anthropogenic.

Copyright © 2009-2012 T.S. Niazi, All rights reserved, ISBN: 1-4392-5791-4, ISBN-13: 9781439257913 More Than 60 Minutes- When Earth Stands Still Chapter 2

15 Responses to Earth Temperature

  1. HarryW says:

    Um…Mars has *no* magnetic field.

    • 1) Mars has a molten liquid iron core, confirming that the interior of the planet has some similarity to Earth and Venus
      2) Mars does not have all-round-the-planet aerial magnetic field that, on Earth, is the source of the aurora borealis and the antipodal aurora australis. According to the physicists, the auroras on Mars aren’t due to a planet-wide magnetic field, but instead, are associated with patches of strong magnetic field in the crust, primarily in the southern hemisphere What if the Martian magnetic field is more sedimental than aerial? It fluxes out of the planet at the magnetic poles only to re-emerge back through the geological layers from pole to pole.
      3) I believe that Earth has a 3-magnet configuration as I explained on that is composed of A) two induced magnetic fields that are generated in the outer core. They are weak and appear in patches of south magnets in the southern and northern polar circles, and B) one permanent magnet; the inner core, that is strongly fluxing out of Antarctica, circling around the planet and is observed as the Earth-wide magnetic field.
      4) I believe that Mars equally would have a 3-magnet configuration which is composed of A) a permanent magnet that is not strong enough to aerially circumvent the planet but rather flow through the geological sediments from pole to pole, and B) two induced magnetic fields of south magnetic polarity when observed on its surface at the poles’ locations. Such magnetic umbrellas at both poles stand as shields against the Sun charged particles and therefore leading to low temperature on surface for CO2 to freeze.
      5) The approach to the inner solar system of Tyche which is not yet confirmed by NASA, results in pulling the Martian magnetic field force lines from their usual paths. As the magnetic umbrellas loses some of its force lines, more charged particles arriving from the sun manage to reach the poles’ regions at high kinetic energy. The heat generated out of the bombardment of such protons causes the frozen CO2 to start to melt.

  2. Pingback: Earth’s magnetic field is collapsing and it could affect the climate | Earth Changes

  3. Pingback: Unprecedented Temperatures | Earth Changes

  4. Pingback: Is the Ice Sheet Melting or Growing? | Earth Changes

  5. Pingback: Current Magnetic Field Map Confirms 3-Magnets configuration | Earth Changes

  6. Pingback: Documentary: What when the Earth stops spinning | Earth Changes

  7. Pingback: The true drop in the Magnetic Field strength | Earth Changes

  8. Pingback: Another proof that Low Surface Temperature follows the Magnetic Pole | Earth Changes

  9. Walter Snell says:

    Suggesting that earth’s day and night temperature swings would be much more extreme and like the moon if the earth lacked a magnetic field would seem to neglect the very considerable green house effect of the earth’s atmosphere. Could you explain?

  10. I’d rather consider Mars to answer the question, since its climate has important similarities to Earth. It has polar ice caps, seasonal changes and noticeable presence of weather patterns. The atmosphere of Mars is roughly 100 times thinner than Earth’s, but it is still thick enough to support weather, clouds, and winds. The atmosphere height is 11 km (6.8 miles), versus 17 km ( 10.6 miles) of Troposphere’s height on Earth. The average temperature on Mars is −55 degree C (−67 degree F) and the surface temperatures may reach a low of about −153 degree C (−243 degree F) at the poles and a high of about 20 degree C (68 degree F) at noon at the Martian geographic equator. Its equator also happens to align with the Martian magnetic equator although the Martian magnetic field is very weak.

    When we apply the solar radiation formula as shown above in this very page, we find that while the heat that arrives from the Sun to Earth measures 1,366 watt/ m2, it measures 698 watt/m2 on Mars. It makes you wonder why the Martian average surface temperature is −55 degree C (−67 degree F) while the average surface temperature on Earth is +14.6 degree C (+58.3 degree F). In this page as detailed above, I explain that the temperature on the surface of Earth is not only influenced by the Sun’s radiation but also influenced by the Thermosphere’s radiation in a ratio of 1 to 2. Now, since CO2 forms 96% of the Martian atmosphere, one would expect that the Martian atmosphere would lock in much of the heat arriving from the Sun following the greenhouse effect principle! and that Mars would keep warm and get warmer. But it does not, does it? Therefore, I tend to believe that the greenhouse effect is irrelevant to the global warming studies.

    There remains one question to be answered: Why is there sharp day/ night swings of temperatures at the Martian surface? Well, the bombardment of Sun’s charged particles is shielded to a great extent by Earth’s strong magnetic field. However, a different case applies on Mars; due to the weakness of its magnetic field, the charged Protons find its way to hit the Martian surface during the day, causing the region facing the Sun to get warm, only for the Sun to set, then the warm region falls back to harsh coldness.

  11. Pingback: Why CO2 is on the rise | Earth Changes

  12. Sam says:

    Excellent information. But I still could not understand why temperature at tropic of capricorn is lower on 21 December compared to tropic of cancer on 21st June.

    • T.Niazi says:

      Several factors could influence the temperature map at the thermosphere layer and therefore related thermal radiation on the surface of Earth such as: Earth orbit around the Sun is not a perfect circle, the 2 magnetic poles are not aligned on the same axis from the axis of rotation (10 and 23 degrees shift in north and south geos), the amount of protons flow during the 11 year Sun cycle, Sun flares, Sun spots..etc On top the trade winds could very well add to the influence on the ground temperatures.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s